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Abstract 7o is the Lorentz factor of the reference particle. The nor-

The study of ionization cooling considered for muonmahzed on-axis solenoid field strengthand quadrupole

colliders requires a full 6D treatment because of thgraacgentg are given byx(s) = TZOBS(O’O’S) andg(s) =
need to exchange the longitudinal and transverse emits 5, Whereg is the muon's chargel/(s) represents the
tances. A general cooling channel consists of solenoids affhgitudinal focusing from rf. For a gradient dipole with
quadrupoles for focusing, dipoles to generate dispersiofymmetric focusingl/p(s)? + g(s) = —g(s), and the to-
wedge absorbers for cooling and emittance exchange, af focusing strength becomés(s) = r(s)? + 1/2p(s)?.

rf cavities for reacceleration. The quadrupole strengths cdren the Hamiltonian

b_e adjusted so that the net_focusing is cylindrically symmety — 3 (Pf; +p§) + %K(s) (I2 + y2) — k(s)L, 2)
ric. The beam moments in such a system are completely

specified in terms of five generalized emittances. We de- _® 1 {1 52+V(5)22]

rive a set of coupled first-order differential equations de- p(s) 2% '

scribing the evolution of the generalized emittances due g fiamiltonian applies to linac-like single-pass channels
the damping and excitation processes. The framework fag \e|| as ring-like multi-pass channels that are under con-

lattice design is considered. sideration. In any case, the underlying physics is 6D ion-
ization cooling in a (quasi-) periodic channel.
1 INTRODUCTION To understand the basic beam dynamics of 6D ioniza-
. tion cooling and to establish a theoretical framework for
In order to reduce both the transvv_ar_se and Iong_ltudlnqgil]e design of cooling channels, beam-moment equations
emittances of a muon beam for envisioned neutrino fagjzye heen developed in several papers for ionization cool-
tories and muon colliders, 6D ionization cooling channelfhg over the past several years [5-10]. Cooling dynam-
are being developed [1-4]. Promising designs consist gfg jescribed in the next section are based on Ref. [10].
sFrong solenoid; to p.rovide. transverseT focusing, (gradienfhere are 21 different second moments for a 6D phase
dipoles to prowdg dlspersm_n for emittance exchang_ev &bace. In general, they are formidable to treat analytically.
Iow-freque_ncy _rf fl_eld to provide longitudinal aQC_elerat'O”However, since we are mainly interested in cooling of a
and focusing, liquid hydrogen absorbers at minimum beig,a¢ched beam (i.e., it has equilibrium Gaussian distribu-
Iocayons to provide ionization energy _Ioss for_ transversgon of the focusing channel) and the damping and exci-
cooling, and wedged absorbers at maximum dispersion Igyions are small perturbations to the Hamiltonian motion,
cations to provide momentum-dependent energy 10ss f@fa oment equations can be reduced to evolution of beam-
Iongltudlnal cooling. The !lnear Hamiltonian of such a fo'envelope functions characterizing the shape of the phase-
cusing channel can be written as space distribution and evolution of beam emittances char-
acterizing the distribution density. The envelope functions

1 1
H=3 (p3+1)) + 5/@2 (z* +y*) — KL, (1) are dominated by the strong Hamiltonian forces, and emit-
5 2 1/ 1 tance evolution is determined by the small dissipative and
_roy 2% + §g(x2_y2) +35 (2 62+Vz2> diffusive forces. Beam evolution near equilibrium has been
P 14 Y0

well treated in the context of radiation damping in electron
storage rings [11]. The general formalism can be applied
to the ionization cooling as well. In this short report, we
briefly outline the theory of emittance evolution in section
Yand envelope-function design in section 3.

where the spatial coordinatds:,y,z) and their corre-
sponding canonical momenta,, p,,d) are defined rela-
tive to a reference particle whose trajectory is a plane cur
with radius of curvaturg(s) and follows the channel’s lay-
out. L, = xp, — yp, is the canonical angular momentum.

The path lengths along the reference orbit is used as the 2 EMITTANCE EVOLUTION
time variable, and = (p—po)/po is the relative longitudi- |y 3 cooling channel, the equation of motion using path-
nal momentum deviation from the nominal momentudn  |engths as the time variable is of the form
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Foundation. tonian part of the motion, wherg is the simplectic ma-



trix whose elements are the Poisson brackets of the phasleat decouples the transverse and longitudinal motions,
space variables, anld is the symmetric matrix associated provided that the dispersiods, andD,, are zero in rf cav-
with the above Hamiltoniai viaH = XTHX/2. The ities and satisfy the equations

last term in Eq. (3) represents the interaction with materi-

als giving rise to weak dissipation and diffusion. Itisofthe D’ + KD, = cos ¢ ’ DZ + KD, = smqﬁ. (12)
form P ( ‘
aX _ aXx L E—AX4E (4) Here the symbdlindicates quantities in the Larmor frame
ds |y ds |up ' and a prime indicates differentiation with respecttoln

terms of the betatron motionz andyg and synchrotron

Here(dX/ds is the dissipative part of the interaction ) o Lol
(dX/ds) w0 P P motion z, the new Hamiltonian simplifies to

with material,A is the dissipation matrix, aré represents
the stochastic excitations discussed later in the moment 1/ O
equations. The dissipative part of the equation of motion s = 5 (pm,ﬁr pya) + gK(zﬂ +95)+ 5 ([0 V),

2
is given by - > (13)
_ 1 _ Dgcos[é(s)] _ Dysin[¢(s)]
dx dy dz where(s) = 7 _p(s) p(s) -
ds |y p - s D ~ ds D =0, ) The Hamiltonian Hz has five linearly-independent
i ’ ' ’ quadratic invariants
Do _
ds LD - n (pz + K?J) ) (6) Ia: =T (E% + 2aT xgpzﬁ + ﬁT piﬂ’ (14)
dp I, =vry3 + 2a s + Br D2, 15
Ty = —1n(py — k), (7) Y ’YTyf T YpPys prJﬁ (15)
S 1M, I,=~1 2%+ 2ayp 26 4+ B 6%, (16)
dd TBPys + YBP
7 = —(0sm)0 — (Ozm)z — (Oym)y.  (8) ILpy=~rxsYys+ 2OZTW + 81 PayPys, (17)
M,D
Heren = L 4E js a positive quantity characterizing the
pv ds

average force due to ionization energy loss for a muon éfere the envelope functionsy, etc., are the periodic so-
momentump and velocityv. The terms(p, -+ xy) and lution of the following familiar equations

(py — k) are, respectively, the x and y components of the ) . + a2

kinetic momentum. The wedged absorbers are treated asPr = —2ar, ap = Kfr —7r, y7 = 3 (19)
having uniform thickness with density depending linearly T
on the transverse coordinates. To linear order, the Wedgg

absorber is characterized byn andd,n, and the energy 1+af
dependence of ionization energy loss is giveropy. 6L

From the equation of motion, the moment equation reads averaged over the phase space, these five single-particle
az (JH+AD)E+E(JH+AD)T +B. (9 invariants lead _to five beam invariants that are usually
ds called beam emittances:

py =—2Iar, o, =Vpr—Iyr, vp = . (20)

Here the quadratic beam-moment matfix= (X X7), the 1 .
diagonal matrixB = diag(0, x, 0, x, 0, xs) arising from € = §<Ii>» i € {z,y,2,2y,L}. (21)
the StOChfaS“C excitations repre;enltedibly Eq._ (). There_ Using emittances and invariants, the normalized equilib-
are two different sources of excitations: multiple scatterln% o .
. . um distribution can be written as
characterized by the projected mean-square angular devi-

2
ation per unit lengthy = (13'(;#) o whereLoa s p(x) =

Z(EIey—sgy—ezL) 2ez , (22)

1 _eylotenly—2eayloy—2e, Ly 1,
Lyaa’

—— €

the radiation length of the absorbers, and energy straggling (2m)%€sp
characterized by the mean-square relative energy deviatigihere the 6D emittance is
per unit lengthy. 5 9

To solve the cooling dynamics contained in Egs. (3, 9), €op = (€x€y — €zy —€1) - (23)
we first solve the Hamiltonian part that preserves the emitn a focusing channel without absorbers, the invariant emit-
tances and then compute the emittance evolution due gances and the lattice functiops. 1, a1, etc. determine
dissipation and diffusion. The Hamiltonian, Eq. (2), canhe matched beam through the equilibrium phase-space dis-
be decoupled to a simple form by two canonical transfotribution, Eq. (22).
mations: a rotation to the Larmor frame (rotating with the \We now address the effect due to interaction with ma-
angleg(s) = [, x(5)ds) that decouples the two transverseterial. Since the interaction is a weak perturbation to the
degrees of freedom, and the dispersion transformation Hamiltonian system, the beam phase-space evolution still
follows the above equilibrium distribution but the emit-
tances will slowly approach certain equilibrium values de-

i= Z5+D.0, Pp=ps, +DL5, (zey) (10)
B) (11) termined by the balance between ionization cooling and

z2=2—DLi+ Dypy — D)j+ Dyp,, &=



stochastic heating. The s-derivatives of the emittances c#ireory should still provide a good guidance in the early de-
be computed by inserting the material part of the equatiosign stage since few machines work in a situation where
of motion into the derivative of Eq. (21). The stochastidheir linear behavior performs badly.

contributions can be derived from Eq. (9). The results are In addition to numerical methods, analytical formulas
for beta function and orbit stability are derived in Refs. [13,

= —(n—ec_)es +ecica +esieny +her +xs, (24) 14]. The focusing properties are determined by the Hills

w o~

€

€a = —(n—ec_)eq +ecyes + Xas (25)  equationi/j+K (s)is = 0. For a periodic solenoidal chan-
€y = — (1 — €c_)eqy + €54 €5 + Xay, (26) nel, the field varies continuously with peridd It is nat-
¢, = —(n—ec_)er +bes + XL, (27) ural tg use the Fourier f:oefnmen{fn}é of tf;e normalized
€ = —(O5m + 2ec_)es + Xos (2g) focusing strength functiod(s) = (£)” K(%¢) to charac-

terize the solenoid field. Herg= 7+ is the normalized
wheree, ande, are the symryetricqand asymmetric emit-position. The beta function can be calculated with
tances(e, + €,)/2, e |D| - |0n]/2 is half of the Lsm(\ﬁw) R[9,, e/ L]
maximum exchange rate through dispersions and wedge$(s) = +Z —
cx = cos(fp + Oy ) andsL = sin(fp + Oy ) with 6p T Vo sinp n=1 - Yo

andfy, being the orientations of the dispersion vector and (35)
the wedges, and = nrfr + ares_ + fre's’ with Here is the one-period phase advance that can be calcu-

= > . . lated viacos p = A/2, andA is the trace of the one-period
! /. /! — , — . - ] ;
teatign|tl;r|ms|aa?|e/ 2andsL = sin(0p — fw). The exci transfer matrix that can be calculated with
1 1 7 sin \/ o |9, ]?
Xs = %6TX + 2Hs X5 (29) A = 2cos(v/Jor) + Z Gy n2
Xa = =HaXs, (30) (36)
% 1 The orbit stability can be determined by the well-known
X: = =Brxs+ =y(D?+ D?)x (31) criteria|A[ < 2. Higher-order expressions ¢f and A
‘ 2 2 * v i i i
1 are available in Ref. [13]. Using these formulas, one can
Xoy = =HayXs, (32) quickly estimate the basic properties of a solenoidal chan-
% nel from the Fourier coefficients of its focusing function.
XL = §HLX5, (33) More important than computing the values, insight can be

gained from these analytical expressions.
Here the’H functions are defined 5imi|ar|y as Eqs (14- Beyond the linear lattice design, ionization Cooling chan-
18) but phase-space variables are replaced with dispéels need to confront severe nonlinearity due to the strong
sion functions. For example, as in radiation damping thdocusing required and compactness of the channel. On this
ory, Hy = yrD2 + 2arD, D/, + BpD’?. These heat- front, not much has been done except simulations.
ing terms arise from stochastic contributions to the beam
invariants.

Note that the emittance exchange is accomplished b){l]
trading the damping ratec_ between the transverse and
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